"Laboratory medicine: Preparing for the 2020's"

BUDAPEST NOVEMBER 9-11, 2018

Standardization of HbA₂: a long way to succeed

Andrea Mosca

Centro per la Riferibilità metrologica in Medicina di Laboratorio Dip. Fisiopatologia medico-chirurgica e dei trapianti Università degli Studi di Milano

- * Why HbA₂ is important
- * State of the art
- * Activities of the IFCC WG-HbA₂
- * Reducing inter-laboratory variability

2

* Future perspectives

* Why HbA₂ is important

- * Stat
- * Autivities of the IFCC WG-HbA
- * Roducing inter-laboratory variability
- * Future perspectives

*contents

A. Mosca - UniMI

World Distribution, Population Genetics, and Health Burden of the Hemoglobinopathies

Thomas N. Williams¹ and David J. Weatherall²

3

¹Kenya Medical Research Institute/Wellcome Trust Programme, Centre for Geographical Research, Killii Digrict Hospital, PO Box 230, Killili, Kenya

³Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford OX39DU, United Kingdom

Correspondence: twilliams@kilifi.lamri-wellcome.org

Table 1.	A breakdown of the annual number of hirths
with the	different herooglabin disorders

Annual births with major hemoglol	bin disorders
β-thalassemia major	22,989
HbE B thalassemia	19,128
HbH disease	9568
Hb Bart's hydrops (a ⁰ /a ⁰)	5183
SS discuse	217,331
S β thalassemia	11.074
SC disease	54,736

From available data (Modell and Darlison 2006; Weatherell 2010).

The role of haemoglobin A_2 testing in the diagnosis of thalassaemias and related haemoglobinopathies

A Mosca,¹ R Paleari,¹ G Ivaldi,² R Galanello,³ P C Giordano⁴

9

Paleari et al, Clin Chim Acta 2018;477:60-5

Fig. Lines-laboratories results obtained from two different RQMs previous, at three different leavis of RMs, total hemselphila amount of substance tractices, prosped according to the methods used by the participants. The inferent RQMs previous distances in 2018 from the Tallan hers-degrad. Program: The right parel refers to the data obtained from two the intermediated by the participants. The inferent reports the data obtained to 2018 from the Tallan hers-degrad. Program: The right parel refers to the data obtained from two the intermediated by provided by the 2-dat obtainations. The authories in participants pare method are reported in Instalnet, from the lower to the higher RMs, level. Point and one has represent means and 50, respectively. The dotted later reported the linear of the allocable total error of ± TK.

Paleari et al, Clin Chima Acta 2017;467:21-6

1. Definition of a reference measurement procedure using mass spectrometry associated with proteolytic degradation

A. Mosca - UniMI

13

Approved IFCC Reference Method fo of HbA _{1c} in Human Blood	IFCC 2002/1.
nternational Federation of Clinical Chemistry and Laboratory Medicine (IFCC) ¹²²¹ Scientific Division Working Group on HbA ₁₆ , Standardisation ²⁰ and Vetwork of Reference Laboratories for HbA ₁₆ ⁴ Prepared for publication ^{50,69} by Nan-Olof Jeppsson ^{1,7} , Uwe Kobold ⁹ , John Barr ³ , Andreas Tinke ⁹ , Wuleand Hoelze ⁹ , Tatao Hoshino ⁶ , Kor Miedema ³ , Andrea Mose ²⁰ , Pierluigi Mauri, Rite Paron ¹ , Linda Thienpont ⁹ , Masao Umemoto ¹⁹ and Cas Weykamp ¹¹	Image: start Mill Complete: Mill Com

2005 -2009 activities

Development of the methods

> Choise of the proteolitic enzyme (endoproteinase Lys C, Trypsin)

Definition of digestion protocol (denaturation step with acetonitrile, trifluoroethanol, rapigest, digestion time, temperature, time course)

- > Choise of marker peptides ($\delta T2$, $\delta T3$, $\delta T14$, $\alpha T4$, $\alpha T5$, $\alpha T11$)
- > Choise of column (Tosoh TSK gel, Zorbax)
- > Analytical condition
- > ESI-MS detection (double-charge, mono-charge)

A. Mosca - UniMI

15

2005 -2009 activities

Interlaboratory exercizes

- 2006: 6 calibrators, 29 samples
- 2007: 6 calibrators, 20 samples (2 digestions, 2 replicates/digested)
- 2008: 4 calibrators, 3 samples (3 digestions, 3 replicates/digested)
- 2009: 1 calibrators, 1 samples (centralized digestion, measurements over 5 days)

> Inter-laboratory variability

Repeatability and within-lab precision of HbA2 determination using IDMS (EP15-A3)

Table 2	repeatabili	ty and withir	-lab precisio	nofHbA₂de	termination	usingIDMS
	day	aliquot 1	aliquot 2	aliquot 3	mean	SD
			HbA ₂ (%)			(%)
	1	2.95	3.00	2.91	2.95	1.53
	2	2.96	2.95	3.01	2.97	1.08
sample 1	3	2.94	2.91	3.02	2.96	1.92
	4	2.99	2.99	3.07	3.02	1.53
	5	3.03	2.97	3.06	3.02	1.52
repeatability	(%)	1.50				
within-lab p	recision (%)	1.68				

Arsene et al, Clinica Chimica Acta 2018

Development of a candidate certified refernce material (CRM)

- Lyophilized material

Stability of the lyophilized material

													Clinic	a Chir	nica A	Acta 4	77 (2)	018) 60	0–65								
-	ġ,										Contents lists available at ScienceDirect																
AL YES	Clinica JOURNE JOURNAL HOMEPAGE:											1 C.	Chimica Acta														
Ca dif	li∣ ff€	br ere	ati enc	ior ces	ı b	y c f ci	om 1rr	imi ent	utal : hiş	ole c gh-p	on erf	tro orr	l n nai	nat nce	eria e m	als ietl	is 100	abl ls f	e to or F	re Ib/	du 4₂≉	ce i	int	er-:	me	th	od
w	who						Ly	oho	che	k 1					Ly	Lyphochek 2											
	T	1	2	3	4	5	6	7	8		1	2	3	4	5	6	7	8		1	2	3	4	5	6	7	8
1	t		-			1	Ľ			1									1						-		
2		1								2	\checkmark	12							2		101	-					
3				1917						3	4	4							3	٠	٠						
4			٠	4						4	X	1	V						4		V	٠					
5	Ŀ	4	1	×	×.					5	1	4	V	v			_		5	1	4	٠					
6	4	4	<	٠	•	¥		_		6	4	4	Y.	V	×		_		6	1	4	٠	٠	1			_
7	Ŀ	•	•	1	4	1	•	100		7	×	V	1	V.	4	4	201		7	4	٠	٠	٠	4	×.		1
8	1.		•	٠	•	•	1	•		8	1.4	×	×	Y	¥	¥.	Ý	115	8	٠	•	•	٠	¥	٠		100
RF	' 1									RP	2								RF	, 3							
	Г	1	2	3	4	5	6	7	8		1	2	3	4	5	6	7	8	T.	1	2	3	4	5	6	7	8
1	B									1									1	10							
2		1								2	¥.								2	V	100						
3	Ŀ	4	×	111						3	4	1							3	X	1						
4		1	1	V						4	4								4	4	4	Y					
5	Ŀ	4	1	4	14	122				5	1	1	1	1	1	_	_		5	4	4	4	1	13			
6	ŀ	4	1	1	×.	1		_		6				V	×,	10.00	-		6		V		1	1			-
7		4	√.	1	V.	4	¥	112		7	V	Y		٠	×,	٠			7	V	1	V	4	V			1
. 8	I.v	1	4	1	sv	14	V.	V		8	V.	1	V.				v		8	11	14	15	12	81	1.	12	100

14

- * IFCC WG members (R. Paleari, C, Arsene, P, Kaiser)
- * C. Hartefeld (Leiden University, NL)
- * I. Zegers, H. Schimmel (JRC, BE)

*acknowledgements