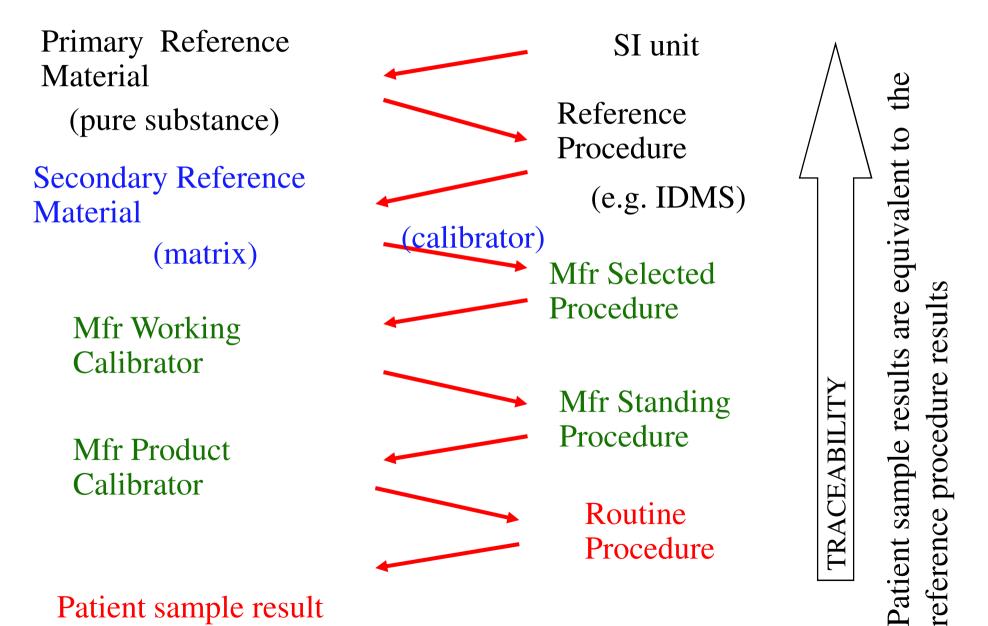
IFCC Scientific Division Report to Council, Istanbul, June 2014

Ian S.Young Queen's University Belfast Chair, IFCC-SD

Name	Position	Country	Term	Time in
Heilie		country		Office
I. Young	Chair	UK	2 nd	2014 01 - 2016 12
P. Gillery	Vice-Chair	FR	2 nd	2014 01 - 2016 12
G. Myers	Secretary	US	2 nd	2012 01 - 2014 12
N. Hamasaki	Member	JP	2 nd	2012 01 - 2014 12
G. Merlini	Member	IT	2 nd	2014 01 - 2016 12
C.Cobbaert	Member	NE	1 st	2012 01 - 2014 12
J. Passarelli	Corporate Rep	US	2 nd	2013 01 - 2015 12
H. Schimmel	IRMM Consultant	BE		
D. Bunk	NIST Consultant	US		
M.Muller	Chair JCTLM	AT		

IFCC SD

- Mission and objectives
- How SD is structured and how it works
- Achievements and work programme
- Future work programme


Mission and objectives

IFCC SD

Mission: to advance the science of Clinical Chemistry and to apply it to the practice of Clinical Laboratory Medicine

- By identifying technical innovations and diagnostic strategies and assisting the transfer of these to the profession
- By promoting the standardization of laboratory tests and the comparability of patient results through the development of reference measurement systems, or harmonization activities where this is not currently possible
- By establishing standards for scientific and technical aspects of good laboratory practice

Traceability (based on ISO 17511)

IFCC-SD – Working in Partnership

- IFCC Divisions
- Corporate members
- Metrology institutions
- Governmental bodies and non-Governmental organisations
- Other professional bodies
- Clinicians and clinical organisations

Mission and objectives

How SD is structured and how it works

Scientific Division

Committees

Working Groups

Theme orientated

Task orientated

Appointed Chair plus four/five elected members

Corresponding members Appointed Chair plus unlimited members

Mission and objectives

- How SD is structured and how it works
- Achievements and work programme

IFCC SD – some key achievements

- More than 150 scientists and clinicians from all IFCC regions involved as members of Cs / WGs
- SD symposia at most major international congresses
- Bergmeyer conferences on Vitamin D and Women's Health
- Key publications

SD-Committees

8.2.6.	Nomenclature, Properties and Units (C-NPU) in collaboration with International Union of Pure and Applied Chemistry (IUPAC)	R.Flatman (AUS)
8.2.11.	Molecular Diagnostics (C-MD)	D.Payne (US)
8.2.21.	Reference Systems of Enzymes (C-RSE)	F. Ceriotti (IT)
8.2.23.	Traceability in Laboratory Medicine (C-TLM)	L.Siekman (DE)
8.2.24.	Reference Intervals and Decision Limits (C-RIDL)	K. Ichihara (JP)
8.2.25.	Standardization of Thyroid Function Tests (C-STFT)	L. Thienpont (BE)

Committee on Nomenclature, Properties and Units Robert Flatman (AUS)

Current Projects

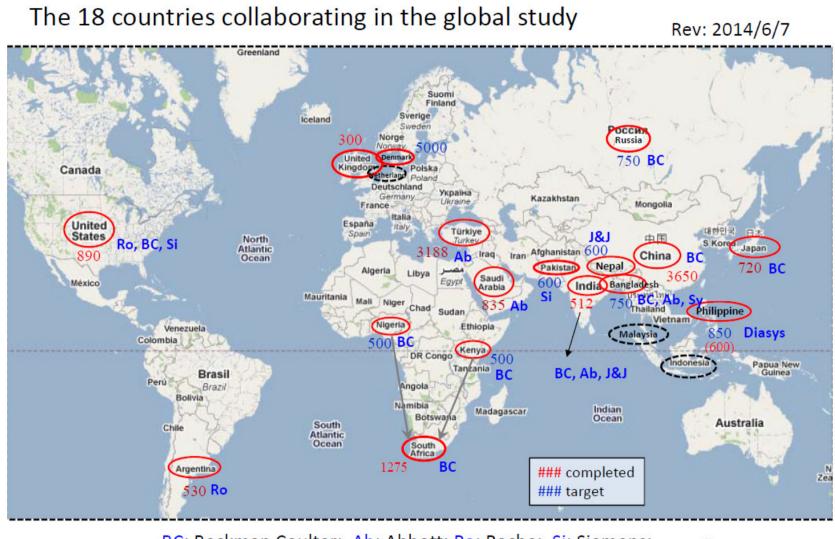
- Transfer and maintenance of the NPU generic database on the IFCC site
- Mapping of the IFCC-IUPAC laboratory coding system to SNOMED CT
- Development of an international vocabulary for nominal examinations in scientific communication

Committee on Molecular Dlagnostics Debs Payne (US)

Current Projects

- Establish an International Network of IFCC Reference Centres in Molecular Diagnostics
- Standardise formats for reporting of molecular diagnostic results

Committee on Reference Systems of Enzymes Ferruccio Ceriotti (IT)


- Development of a reference measurement procedure for Pancreatic Lipase
- A recertification campaign for a primary reference material for LD, CK and ALT in cooperation with IRMM
- A certification campaign for a primary reference material for ALP in cooperation with IRMM

Committee on Traceability in Laboratory Medicine Lothar Siekmann (DE)

- To support activities regarding Traceability in Laboratory Medicine
- To support reference laboratories in the context of complete reference systems by establishing an External Quality Assessment Scheme (EQAS) for reference laboratories in order to monitor their competence
- To promote establishment and maintenance of IFCC reference laboratory networks for clinically relevant measurands

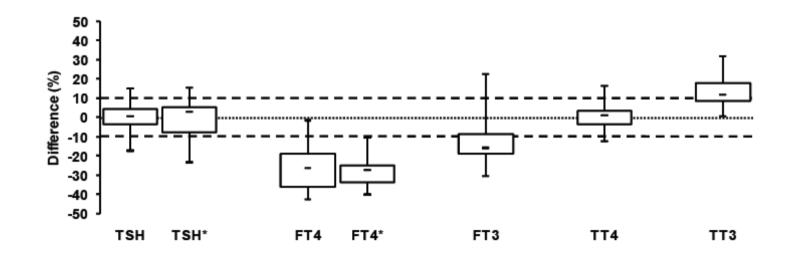
Reference Intervals and Decision Limits Kiyoshi Ichihara (JP)

- To make available reference intervals and decision limits that respect the requirements of international directives
- To determine priority list of measurands (analytes) for which reference intervals and/or decision limits have to be developed, considering various factors, such as age, gender, ethnicity, and for which the greatest improvements in medical decision making are anticipated
- To establish transferability protocols for reference intervals and decision limits
- To collaborate with other organizations and/or to undertake establishment of reference intervals or decision limits for measurands (analytes) identified as a priority

BC: Beckman Coulter; Ab: Abbott; Ro: Roche; Si: Siemens; Sy: Sysmex; J&J: Jonson and Johnson; Diasys;

Reference Intervals and Decision Limits Kiyoshi Ichihara (JP)

- Ichihara K, Ozarda Y, Klee G, Straseski J, Baumann N, Ishikura K; Committee on Reference Intervals and Decision Limits, International Federation for Clinical Chemistry and Laboratory Medicine.
- Utility of a panel of sera for the alignment of test results in the worldwide multicenter study on reference values
- Clin Chem Lab Med. 2013 May;51(5):1007-25. doi: 10.1515/cclm-2013-0248

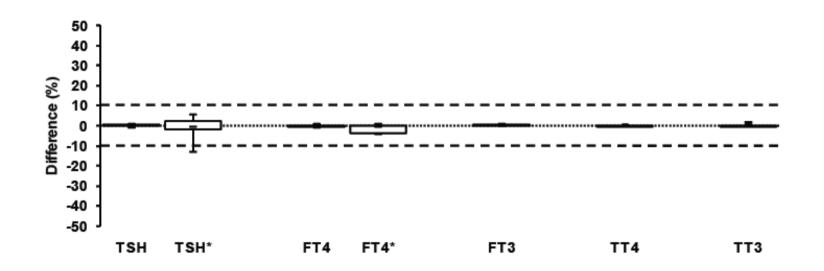

Thyroid Function Tests Linda Thienpont (BE)

- Method comparison studies for FT4 and TSH measurement with clinical samples in preparation for standardization/harmonization; FT4 measurements to be assessed against the conventional reference measurement procedure, TSH against the all-procedure trimmed mean.
- Establishment of a network of FT4 reference measurement laboratories.

Standardisation of Thyroid Function Tests Linda Thienpont (BE)

Status report

Phase II (proof-of-concept): before recalibration



dill:

Standardisation of Thyroid Function Tests Linda Thienpont (BE)

Status report

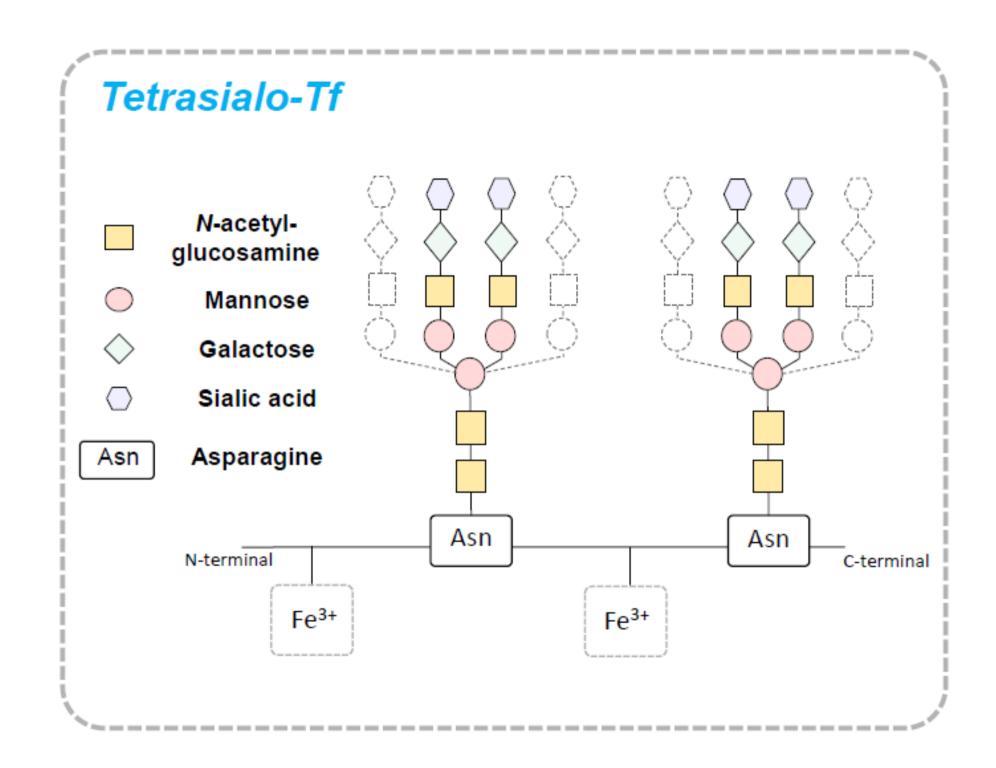
Phase II (proof-of-concept): after recalibration

SD Working Groups

8.3.35	Standardisation of Haemoglobin A2 (WG-HbA2)	R. Paleari (IT)
8.3.36	Standardisation of Carbohydrate- Deficient Transferrin (WG-CDT)	F.Schellenberg (FR)
8.3.39	Standardisation of Albumin Assay in Urine (WG-SAU)	G. Miller (US)
8.3.40	Standardisation of Pregnancy- Associated Plasma Protein A (WG- PAPP A)	K. Pettersson (FI)
8.3.42	Standardisation of Insulin Assays (WG-SIA)	M. Steffes (US)
8.3.43	Standardisation of Troponin I (WG- TNI)	J. Tate (AU)

SD Working Groups

8.3.45	Harmonisation of Autoantibody Tests (WG-HAT)	J. Sheldon (UK)
8.3.47	Clinical Quantitative Mass Spectrometry Proteomics (WG- cMSP)	S.Lehmann (FR)
8.3.48	Serum Parathyroid Hormone (WG- sPTH)	C.Sturgeon (UK)
8.3.49	CSF Proteins (WG-CSFP)	K.Blennow (SE)
8.3.50	Standardization of Bone Marker Assays (WG-SBMA)	H.Morris (AU)
8.3.51	Commutability (WG-COMM)	G.Miller (US)

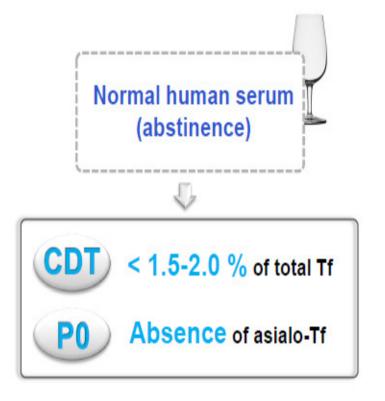

WG – Carbohydrate Deficient Transferrin Francois Schellenberg (FR)

Terms of Reference

- Definition of the measurand and standardisation of the nomenclature
- Preparation of reference material and selection of reference method
- Establishment of appropriate reference intervals
- Development of guidelines for clinical use of CDT assays

Carbohydrate deficient transferrin (CDT)

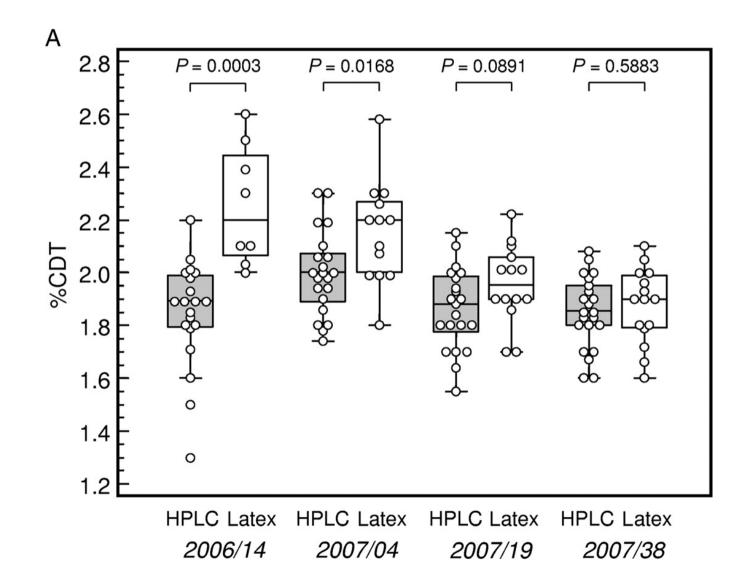
 CDT is the generic term that refers to the transferrin glycoforms whose concentration in blood is temporarily increased by sustained alcohol consumption



Other glycoforms of CDT

- pentasialotransferrin (≈15%)
- trisialotransferrin (≈4%)
- disialotransferrin (≈1.5%)
- hexasialotransferrin (≈1%)

Effect of alcohol consumption on CDT


- Alcohol consumption of more than 60 g/d for more than two weeks leads to a relative increase of disialotransferrin.
- When disialotransferrin level reaches approximately twice the initial level, asialotransferrin becomes detected.

Stibler H., Allqulander C., Borg S., Kjellin KG., Acta Med Scand 204 (1978)49

Need for CDT standardization

CDT standardization

- Disialotransferrin (disialylated monoglycan transferrin) was defined as the measurand and the target analyte for standardization
- HPLC with photometric detection was proposed as the candidate reference method
- A network of reference laboratories running this method was formed that demonstrated good within- and between-laboratory performance

CDT standardization

- The candidate reference HPLC method does not require primary calibrators
- The Working Group focused their efforts on the production of secondary calibrators (Commutable and Stable)

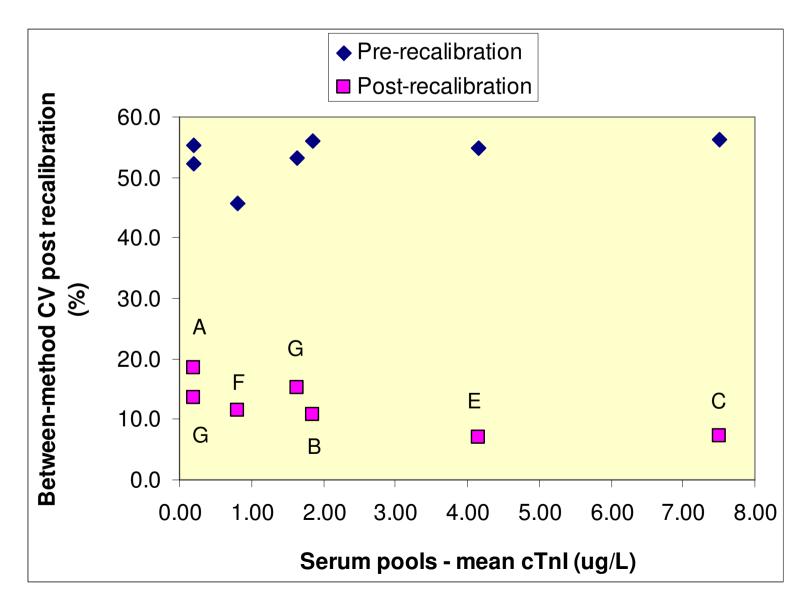
CDT standardization

- Native and disialotransferrin-spiked serum panels were tested as candidate secondary reference material.
- This was done by testing commutability in a group of references laboratories, in the manufacturers' laboratories and in two national external quality assurance (EQA) schemes.
- In addition, the WG tested whether a single or multiple point calibration is needed for calibration of the present commercial methods.

		Harmonization potential				
	Patient panel P1 and P3		Spiked panel S3			
Method	P1 before	P1 after	P3 before	P3 after	S3 before	S3 after
Bio-Rad	1.12	1.23	3.69	3.99	4.22	4.58
Siemens N Latex	1.85	1.34	4.09	3.80	3.87	3.60
Sebia	0.66	1.31	3.46	3.70	3.42	3.66
Candidate reference	1.16	1.16	3.83	3.83	4.27	4.27
Mean	1.20	1.26	3.77	3.83	3.94	4.03
Intermethod CV	40%	4%	7%	3%	10%	12%

Table 2: Calibration potential of candidate reference materials applied to mean results obtained in EQA laboratories with three different samples.

Standardisation of Troponin I Jill Tate (AUS)


Terms of Reference

- Development of a candidate secondary reference measurement procedure and candidate secondary reference material for cardiac troponin I (cTnI)
- Testing for cTnI standardization and clinical validation by comparison with validated commercial assays in a round robin study

Current Projects

- Preparation of a secondary reference material for cTnI consisting of three cTnIpositive serum pools (Phase 2)
- Validation of cTnI standardization through a round robin after a value transfer using the secondary reference material as common calibrator (Phase 3)

cTnl serum pools pre and post recalibration

Development of New Projects

SD horizon scanning

Third party approach

 Assessment of need
Development and submission of formal proposal Agreement on terms of reference

> Approval by SD and EB Establishment of WG or C Work cycle with ongoing review

Becoming involved in the work of SD

- Apply for positions on SD or C's
- Become a corresponding member of a C
- Become a member of a WG
- Propose a new WG or C

On behalf of SD

Thank you!

I.Young@qub.ac.uk